Efficient sampling of high-dimensional Gaussian fields: the non-stationary / non-sparse case

نویسندگان

  • François Orieux
  • Olivier Féron
  • Jean-François Giovannelli
چکیده

This paper is devoted to the problem of sampling Gaussian fields in high dimension. Solutions exist for two specific structures of inverse covariance : sparse and circulant. The proposed approach is valid in a more general case and especially as it emerges in inverse problems. It relies on a perturbation-optimization principle: adequate stochastic perturbation of a criterion and optimization of the perturbed criterion. It is shown that the criterion minimizer is a sample of the target density. The motivation in inverse problems is related to general (non-convolutive) linear observation models and their resolution in a Bayesian framework implemented through sampling algorithms when existing samplers are not feasible. It finds a direct application in myopic and/or unsupervised inversion as well as in some non-Gaussian inversion. An illustration focused on hyperparameter estimation for super-resolution problems assesses the effectiveness of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Parallel Factorizations of SDD Matrices and Efficient Sampling for Gaussian Graphical Models

Motivated by a sampling problem basic to computational statistical inference, we develop a nearly optimal algorithm for a fundamental problem in spectral graph theory and numerical analysis. Given an n × n SDDM matrix M, and a constant −1 ≤ p ≤ 1, our algorithm gives efficient access to a sparse n× n linear operator C̃ such that M p ≈ C̃C̃ ⊤ . The solution is based on factoring M into a product of...

متن کامل

On the Sample Complexity of Graphical Model Selection for Non-Stationary Processes

We formulate and analyze a graphical model selection method for inferring the conditional independence graph of a high-dimensional non-stationary Gaussian random process (time series) from a finite-length observation. The observed process samples are assumed uncorrelated over time but having different covariance matrices. We characterize the sample complexity of graphical model selection for su...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach

Continuously indexed Gaussian fields (GFs) are the most important ingredient in spatial statistical modelling and geostatistics. The specification through the covariance function gives an intuitive interpretation of the field properties. On the computational side, GFs are hampered with the big n problem, since the cost of factorizing dense matrices is cubic in the dimension. Although computatio...

متن کامل

Spectrum Reconstruction from Sub-Nyquist Sampling of Stationary Wideband Signals

In light of the ever-increasing demand for new spectral bands and the underutilization of those already allocated, the new concept of Cognitive Radio (CR) has emerged. Opportunistic users could exploit temporarily vacant bands after detecting the absence of activity of their owners. One of the most crucial tasks in the CR cycle is therefore spectrum sensing and detection which has to be precise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1105.5887  شماره 

صفحات  -

تاریخ انتشار 2011